Search for a Commodity and Check Solutions Offered
Refine Results
Results 1 - 8 of 8
This report presents the economics of spent sulfuric acid regeneration via double-contact double absorption process. The spent acid is first decomposed in a furnace to sulfur dioxide, which is oxidized to sulfur trioxide. Finally, it is fed to the absorption process for producing sulfuric acid. The economic analysis performed is based on a plant constructed in the United States.
This report presents the economics of spent sulfuric acid regeneration via wet sulfuric acid (WSA) process in the United States. In this process, spent acid is decomposed to form sulfur dioxide and water. The sulfur dioxide is oxidized to sulfur trioxide, which is then regenerated to sulfuric acid by vapor-phase reaction with water.
This report presents the economics of Sulfuric Acid production from sulfur in the United States. In this process, sulfur is burned to form sulfor dioxide, which is then converted to sulfur trioxide. Sulfor trioxide is converted to sulfuric acid by double-contact double absorption (DC/DA) with a high concentration sulfuric acid solution in water.
This report presents the economics of Sulfuric Acid production from sulfur in the United States. In this process, sulfur is burned to form sulfur dioxide, which is then converted to sulfur trioxide. This sulfur trioxide is converted to sulfuric acid by absorption with recirculating sulfuric acid solution in water in only one column.
This report presents the economics of recovering hydrogen sulfide gases to generate sulfuric acid in the United States. In this process hydrogen sulfide is initially burned, forming sulfur dioxide and water. The sulfur dioxide is then converted to sulfur trioxide, The sulfur trioxide reacts with the water previously generated and yields sulfuric acid.
This report presents the economics of sulfuric acid production from iron pyrite in the United States. In this process, iron pyrite is roasted, releasing SO2 rich gas. The gas is treated for undesirable compounds removal and then, sulfur dioxide contained in the gas is converted to sulfur trioxide, which passes through double-contact double absorption to generate sulfuric acid.
This report presents the economics of sulfuric acid production from iron pyrite gases in the United States. In this process, iron pyrite gas is treated for undesirable compounds removal and then, sulfur dioxide contained in the gas is converted to sulfur trioxide, which passes through double-contact double absorption to generate sulfuric acid.
This report presents the economics of employing hydrogen peroxide abatement to generate Sulfuric Acid from tail gas in the United States. In this process, hydrogen peroxide is used to oxidize sulfur dioxide to sulfuric acid.