Search for a Commodity and Check Solutions Offered
Refine Results
Results 1 - 7 of 7
This study evaluates the production of Monoethylene Glycol from ethylene in the United States. The process analyzed is similar to Shell OMEGA. In this process, ethylene is first oxidized to ethylene oxide (EO). Part of the ethylene oxide generated is sold as a by-product and the remaining part is carbonated to form ethylene carbonate, which is finally hydrolyzed to MEG.
This study presents the economics of Monoethylene Glycol (MEG) production from ethylene in the United States. The process described is similar to Shell OMEGA. First, ethylene is oxidized with pure oxygen to produce ethylene oxide (EO). The EO is then carbonated to generate ethylene carbonate, which is finally hydrolyzed to MEG.
This study presents the economics of Monoethylene Glycol (MEG) production from ethylene. The process described is similar to Shell MASTER. First, ethylene is oxidized with oxygen to produce ethylene oxide (EO), which is further hydrolyzed to MEG. The economic analysis provided assumes a plant located in the United States. Diethylene glycol (DEG) and triethylene glycol (TEG) are also generated as by-products.
This study presents the economics of Monoethylene Glycol (MEG) production from carbon dioxide (CO2) in the United States using an electrochemical process similar to Liquid Light process. Initially, CO2 is electrochemically reduced and acidified into oxalic acid. Then, oxalic acid is esterified with methanol producing dimethyl oxalate, which is hydrogenated forming MEG.
This report presents a detailed cost analysis of Monoethylene Glycol production from ethylene oxide. The process examined is similar to Shell OMEGA, in which ethylene oxide is hydrolyzed to MEG via ethylene carbonate, generating no by-products. The economic analysis assumes a plant located in the United States.
This assessment approaches the production of Monoethylene Glycol (MEG) from ethylene oxide in the United States. In the process under analysis, ethylene oxide is directly hydrolyzed to MEG. Diethylene glycol (DEG) and triethylene glycol (TEG) are also generated as by-products.
This report presents the economics of Monoethylene Glycol (MEG) production from synthesis gas via dimethyl oxalate intermediate in the United States. In this process, methyl nitrite reacts with carbon monoxide forming dimethyl oxalate. The dimethyl oxalate is then hydrogenated to MEG.