Search for a Commodity and Check Solutions Offered
Refine Results
Results 1 - 10 of 10
This report presents the economics of Dimethyl Ether (DME) production from natural gas with high CO2 content in the United States. The process under analysis consists of four major steps. The first step comprises an amine treatement of natural gas for the removal of CO2. In the second step, natural gas is fed to a combined reforming process producing synthesis gas (syngas) which is, subsequently, converted into methanol. The final step consists of the catalytic dehydration of methanol to generate DME.
This report presents the economics of Dimethyl Ether (DME) production from CO2-rich natural gas in the United States. The integrated process under analysis consists of three major steps. Initially, synthesis gas (syngas) is produced from natural gas, CO2 and water via a promising reforming process that combines dry and steam reforming. Then, the syngas is converted into methanol. The final step consists of the catalytic dehydration of methanol to generate DME.
This report presents the economics of Dimethyl Ether (DME) production from natural gas in the United States. The process under analysis is a two-step process. The first step comprises the conversion of natural gas into synthesis gas (syngas) through combined reforming and subsequent formation of methanol from syngas. The second step consists of the catalytic dehydration of methanol to generate DME.
This report presents the economics of Dimethyl Ether (DME) production from methanol. The process under analysis is the conventional dehydration process, in which methanol is reacted in the presence of a catalyst, yielding DME and water. Unconverted methanol contained in the reactor effluent is recovered reused in the process. The economic analysis performed assumes a plant located in the United States.
This report presents the economics of Dimethyl Ether (DME) production from synthesis gas in the United States. The process under analysis is a two-step process. The first step comprises the conversion of natural gas into synthesis gas (syngas) through combined reforming and subsequent formation of methanol from syngas. The second step consists of the catalytic dehydration of methanol to generate DME.
The report presents the economics of Dimethyl Ether (DME) production from natural gas and carbon dioxide (CO2). In the process under analysis, natural gas is reformed with CO2 yielding synthesis gas (syngas). Syngas is then fed to a one-step process for DME generation - syngas conversion into methanol and methanol dehydration into DME are carried out in a single reaction step. The economic analysis performed assumes a plant located in the United States.
This report presents the economics of Dimethyl Ether (DME) production from natural gas and carbon dioxide (CO2) in the United States. The process under analysis comprises the reforming of natural gas with CO2 for generating synthesis gas (syngas). Syngas, in turn, is used as feed for the two-step DME synthesis - the gas is first converted into methanol and methanol intermediate is dehydrated into DME in a different reactor after methanol purification.
The report presents the economics of Dimethyl Ether (DME) production from synthesis gas (syngas) through a one-step process. In this process, syngas is reacted in the presence of a bifunctional catalyst that supports methanol syntheses and the subsequent dehydration of methanol to DME within a single reactor. The economic analysis performed assumes a plant located in the United States.
This report concerns the econoimics of of Dimethyl Ether (DME) production from synthesis gas through the indirect process. Synthesis is gas is first converted into methanol, which then becomes the feed for a second step in which DME is produced through catalytic dehydration. The economic analysis is based on a United Stats-based plant.
This report analyses the economics of producing Dimethyl Ether (DME) from wood chips in the United States. In the process under analysis, the wood chips are dried and then subjected to pyrolysis and partial oxidation for generating synthesis gas (syngas). Syngas is used for methanol generation and methanol then becomes the feed for a catalytic dehydration process that yields DME.